This looks like an application of Binomial Theorem.
\(23^{23}=23 \times (529)^{11}\)
=23 x (530-1)11
= 23 x (53011-11C153010+11C25309- .....................-1)
There are 12 terms in the series out of which 11 are divisible by 53.
So, \(\frac{23^{23}}{53}=Int-\frac{23}{53}\)
Or, \(\frac{23^{23}}{53}=(Int-1)+1-\frac{23}{53}\)
\(\frac{23^{23}}{53}=+ve Int+\frac{30}{53}\)
\(23^{23}=23 \times (529)^{11}\)
=23 x (530-1)11
= 23 x (53011-11C153010+11C25309- .....................-1)
There are 12 terms in the series out of which 11 are divisible by 53.
So, \(\frac{23^{23}}{53}=Int-\frac{23}{53}\)
Or, \(\frac{23^{23}}{53}=(Int-1)+1-\frac{23}{53}\)
\(\frac{23^{23}}{53}=+ve Int+\frac{30}{53}\)
Thanks sir!!!<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />