If, in ΔABC, (b+c)/11 = (c+a)/12 = (a+b)/13
prove that
(cosA)/7 = (cosB)/19 = (cosC)/25
Using ratio/proportion properties,
\(\frac{{b + c}}{{11}} = \frac{{c + a}}{{12}} = \frac{{a + b}}{{13}} = \frac{{2(a + b + c)}}{{11 + 12 + 13}}\\ \Rightarrow \frac{{b + c}}{{11}} = \frac{{c + a}}{{12}} = \frac{{a + b}}{{13}} = \frac{{a + b + c}}{{18}} \\ \Rightarrow \frac{{b + c}}{{11}} = \frac{{c + a}}{{12}} = \frac{{a + b}}{{13}} = \frac{{a + b + c}}{{18}} = \frac{a}{7} = \frac{b}{6} = \frac{c}{5}\)
Let a=7k, b=6k, c=5k
\(cos A=\frac {1}{5}, cos B=\frac {19}{35}, cos C=\frac {5}{7}\)
Rest should take a few more steps.
Thank you very much sir