Physics, Chemistry, Maths Forum

Maths

Maths

by SRINATH G -
Number of replies: 1

 

1)) Let z=x+iy be a complex nos where x and y are integers. then the area of the rectangle whose vertices are the roots of the equation z(zbar3) + (zbar)z3= 350 is.............

i) 48       ii)32         iii)40           iv)80  

 

2)) The solution set of f'(x)>g'(x) where f(x)= (1/2)52x+1 and g(x)=5x+4xlog5 is.........

i) (1,infinity)     ii) (0,1)       iii) [0,infinity)     iv) (0,infinity)

  

In reply to SRINATH G

Re: Maths

by Mehak Sood -
2))
f(x) = (1/2) 52x+1
f'(x) = 52x+1 log 5
g(x) = 5x + 4xlog5
g'(x) = 5x log5 + 4log5
According to the question f'(x) > g'(x)
therefore , 52x+1 log5 > 5xlog5 + 4log5
log5 [ 52x+1 - 5x - 4] >0
now, let 5x = y
so we get, log5[5y2 -y-4] > 0
(5y+4)(y-1) > 0
=> y < -4/5 , y > 1
=> 5x > 1 or 5x <-4/5 ( which is not possible)
therefore for 5x > 1 , we get x>0
So the correct option is option iv)(0,infinty)