If A is an orthogonal matrix i.e. A*A'= I . Then prove that
|A|= + or - 1 where |.| represents a determinant.
Given, A.A' = I
\(\Rightarrow |A.A'|=|I|=1\)
\(\Rightarrow |A|.|A'|=1\)
\(\Rightarrow |A|^2=1\)
\(\Rightarrow |A|=\pm 1\)
Thak You Sir