Physics, Chemistry, Maths Forum

Integration problem

Integration problem

by ankita chaturvedi -
Number of replies: 2

find the integral of :

(sec x . dx)/{ sin(2x+A) + sin A}1/2

a) secA. {tanx.sinA +cosA)1/2 + K       (K-constant here)

b)21/2 .sec A {tanA +sinAcosA)1/2 + K

c) 2-1/2.secA (tanA.sinA + cos A)3/2 + K

d) none of these

In reply to ankita chaturvedi

Re: Integration problem

by Manish Verma -
\(\int {{{Secx}\over {\sqrt {Sin(2x+A)+SinA}}}dx}\)

\(=\int {{{Secx}\over {\sqrt {2Sin(x+A)Cosx}}}dx}\)

\(=\int {{{Sec^2 x}\over {\sqrt {2TanxCosA+2SinA}}}dx}\)

\(={1\over {\sqrt{2}CosA}}\int {{{Sec^2xCosA}\over {\sqrt {TanxCosA+SinA} }}dx}\)

\(={1 \over {\sqrt{2}CosA}}\int {{{f'(x)}\over {\sqrt {f(x)} }}dx}\)

\(={1 \over {\sqrt{2}CosA}}2\sqrt {f(x)}+C\)

\(=\sqrt{2}SecA\sqrt {TanxCosA + SinA}+C\)
In reply to ankita chaturvedi

Re: Integration problem

by sanchit sharma -

An easy way to solve the given question is:

 See whether the function given is even or odd. If the function is even , its integral will be odd and vice versa.

HINTS FOR THE GIVEN INTEGRAL

1.Here in the question for simplification , we can put value of A=0.

2.Then the  function reduces to  

(sec x . dx)/{ sin2x }1/2

Putting A=0 in the given choices we will get

 a) 1 + K      

  b)0 + K

  c) 2-1/2 + K

  d) none of these

Hence the correct choice is d) because the integral should be in the form of x.